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The Technical Program

The Technical Program typically features 300
oral and poster presentations.  SAGEEP 2026
will be a source of the latest research and case
studies. Fred Day-Lewis, VP SAGEER will be as-
sembling his planning team who are are develop-
ing an impressive Technical Program, featuring
several special sessions and invited speakers.
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President’s Message

Dale Rucker, President
Certerra Subsurface Imaging

drucker@hgiworld.com

Over the past three decades working in environmental and engineering geophysics, I’ve seen the field evolve from
relatively narrow, method-specific applications to a truly integrated science, that combines geophysics, geology,
engineering, and data analytics to solve some of society’s most urgent problems. Whether we’re mapping
groundwater resources, monitoring mines, assessing infrastructure, or detecting buried hazards, the goal remains
the same: turn complex, often invisible subsurface conditions into usable information.

This issue of fastTIMES brings that mission into sharp focus. The articles on acoustic/seismic excitation for
buried target detection, advanced magnetic and gravity methods, and dual-sensor humanitarian demining are great
examples of how innovation and persistence drive our field forward. These aren’t just technical successes. They
are proof that when geophysicists tackle a problem, we do so with precision and a deep understanding of the
physical world.

As someone who has spent years designing surveys for difficult environments, I’'m reminded that the strength of
geophysics lies not only in the tools we use but in our adaptability. Every site is different, and every dataset comes
with its own quirks. Success comes from knowing when to apply the fundamentals, when to innovate, and when
to push for new approaches entirely.

Looking ahead to SAGEEP 2026 in Pittsburgh, I see an opportunity for us to continue building that adaptability
and cross-disciplinary thinking. Whether you’re a researcher, a consultant, or a student, your work has the
potential to address real-world needs in ways that only geophysics can. Let’s make the upcoming conference a
place where we connect our technical capabilities to societal benefits, share lessons, and inspire the next
generation to take the field even further.

— Dale Rucker
President, EEGS
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> @ FastTIMES Editor-in-Chief
: Mehrez Elwaseif, PhD, PGp
(—--3-} Jacobs
ﬁheditorfasttimesnewsmaqazine@qmail.com
Gad El-Qady, Professor L Janet Simms
NRIAG : "‘. ﬁ"’ } Retired
gadosan@nriag.sci.eg staff@eegs.org

On behalf of the FastTIMES editorial team, I am honored to welcome you to Vol 27.3, dedicated to one of the
most pressing humanitarian and environmental challenges of our time — Landmine Detection and Clearance. In
this issue, we feature outstanding contributions from leading experts working at the intersection of geophysics,
engineering, and humanitarian demining. With more than 60 countries still affected by landmines and other
explosive remnants of war, the contributions featured here reflect not only geophysical progress but also the
collective commitment to safeguarding communities, restoring land for safe, civilian use and rebuilding lives.
This issue builds on our commitment to providing high-quality FastTIMES content that highlights the crucial role
that geophysics can play in addressing complex, real-world problems with precision and impact.

I would like to extend my heartfelt thanks to our past EEGS president and guest editor, Janet Simms and Gad El-
Qady, whose expertise and dedication have been instrumental in bringing together the valuable contributions in
this outstanding issue. A special acknowledgment is due to Doug Crice (Geostuff) and Jackie Jacoby (EEGS
administration) for their tireless efforts in communicating with our advertisers whose support is fundamental to
the financial viability of FastTIMES.

I hope you find this issue both informative and inspiring. Enjoy your reading, and please take the time to explore
the websites of our advertisers. Thank you for your ongoing support, and we look forward to your continued
support and active participation in shaping the future of FastTIMES. As we move forward, I encourage all of you
to engage with the articles and share your insights. FastTIMES is more than just a publication; together we can
make it a platform for collaboration and innovation!

Sincerely,

Mehrez Elwaseif
Editor-in-Chief, FastTIMES


mailto:editorfasttimesnewsmagazine@gmail.com

10 FastTIMES vol. 27.3, 2025

Application of Acoustic and Seismic Excitations for
Characterization and Detection of Shallow Buried Targets

Parsa Bakhtiari Rad, Leti T. Wodajo, and Craig J. Hickey
National Center for Physical Acoustics, University of Mississippi

Email: parsarad@olemiss.edu, ltwodajo@olemiss.edu, chickey@olemiss.edu

Abstract

Acoustic and seismic ground excitation can be used to detect high-contrast, ultra-shallow buried objects such as
landmines. Propagating acoustic or seismic waves interact with the buried object, exciting resonant oscillations that result
in higher ground surface vibrations at the buried object's location. The object’s resonances or excitation response can be
used as an attribute for the detection of shallow buried objects. The response of an anti-tank mine, buried at multiple
shallow depths, subject to acoustic and seismic ground excitation, is measured in the field. The study is conducted in soft
(grass) and hard soil (limestone). In the meantime, 3D finite-element modeling in the frequency domain is performed to
simulate seismic wave propagation, scattering, and excitation of the buried mine. Computer simulation results are used to
correlate the field measurements on and off the buried target. Field measurements showed that, for both source types, the
off-target vibration level is higher in the soft soil than in the hard soil. For both soil types, the seismic source generates
higher on and off-target vibration levels due to the shaker's direct coupling compared to the speaker. However, the on/off
object velocity contrast is greater for the loudspeaker. For both source and soil types, the target's resonant frequencies
increase while the on/off velocity ratios decrease with increasing depth of burial. This depth-dependent behavior is
attributed to the mass loading above the mine and the soil shear stiffness with burial depth. The 3D synthetic simulations
showed good agreement with the field data. The simulation results also confirmed that the variations in the physical
parameters of landmine, overburden (topsoil), native surrounding soil, and source type change the buried object’s

response to excitation.

Introduction

Acoustic detection of buried objects, such as mines, has
proven itself as a technique that provides a high
probability of detection and a very low false alarm rate.
The method consists of exciting ground vibrations and
measuring the vibration characteristics of the ground at
many points with a non-contact vibration sensor, for
example, a laser Doppler vibrometer (Aranchuk et al.,
2006). The interaction of a buried object with the elastic
waves in the ground causes the object to vibrate,
resulting in a vibration anomaly at the ground surface
above the object. This can have certain applications for
the detection of buried high-contrast small objects such
as landmines.

A buried mine is a coupled system where the mine
influences the dynamic properties of the soil column
above it as shown in the inset of Figure 1. The response
of the buried mine is dependent on the elastic properties

of the mine itself, the burial depth (which affects the
weight of the soil column above the mine), and the soil
properties of the disturbed soil column and the native
soil (Donskoy, 1999) showed that soil shear stiffness is a
key governing parameter determining the resonance
vibration frequency and the amplitude of the soil-mine
system. Soil moisture and consolidation increase soil
shear stiffness, influencing modal vibrations of buried
mines (Zagrai et al., 2005).

When soil is excited with acoustic or seismic waves, it
vibrates at certain frequencies directly above the mine
with a greater amplitude than the surrounding soil
(Donskoy, Ekimov, Desunov, and Tsionskiy, 2002). It is
postulated and well-documented that many man-made
objects have unique vibrational responses as a function
of frequency (Korman et al., 2004). These are associated
with different vibrational modes within the structure and
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depend on the size and construction of the object (Scott
and Martin, 1999). For many objects of interest, such as
landmines, these unique structural characteristics allow
their detection using acoustic and seismic excitations
(Bakhtiari Rad and Hickey, 2021). The resonant
frequency of a mine is determined by exciting the
ground using a frequency sweep or band-limited noise
and determining the frequency at which the largest
vibration or on-off velocity response is obtained.

During the acoustic excitation (red lines in Figure 1),
loudspeaker sources predominantly generate acoustic
energy, propagating through the air and coupling locally
into the ground. Since the acoustic propagation is within
the air, the ground condition along the propagation path
does not influence it, and the only dependence is on the
acoustic to seismic coupling (Sabatier and Xiang, 2000).
The coupling is local in space, and deformation at the
ground surface is predominantly perpendicular to the
surface. For outdoor ground surfaces, much of the
acoustic energy can be reflected. Therefore, the
efficiency of coupling acoustic energy into ground
vibrations is a limiting factor in acoustic detection
methods. Furthermore, the acoustic to seismic function
depends on the mechanical properties of the ground and
is therefore quite variable. A loudspeaker system is
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traditionally used in landmine detection because it
allows the system to be a non-contact ground excitation.
However, delivering adequate acoustic power to excite
buried mines from a safe standoff distance is difficult
(Haupt and Kenneth, 2005).

A mechanical shaker generates seismic energy (black
line in Figure 1) from direct contact with the ground
surface and acoustic energy (blue lines in Figure 1)
associated with the shaker noise. For seismic sources,
the direct contact between the source and the ground
surface provides a better energy transfer into the ground.
However, this coupling is frequency dependent, and on
many surfaces, seismic sources work best for
frequencies up to 100 Hz, which can be limiting for
buried object detection. The energy propagates through
the ground primarily as surface seismic waves for this
type of excitation. Although the geometrical spreading of
these waves is less than that of acoustic waves, their
decay with range is usually greater due to the larger
attenuation of seismic waves in soils. For buried object
detection at short distances from the source, the ground
deformation due to the acoustic and seismic energy
cannot be easily separated. In landmine detection, the
need to be covert and investigate deeper depths has led
to the use and study of mechanical shakers for ground

excitation.
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Figure 1. A schematic image showing the concept of landmine detection using seismic and acoustic

excitation.
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Field Data Measurements

An anti-tank, VS2.2 landmine simulant was chosen for
characterization measurements. The VS2.2 simulant
model shows a resonance frequency of about 101 Hz,
measured in the lab (Figure 2). The resonance

FastTIMES vol. 27.3, 2025

frequencies of the VS2.2 were measured using a Laser
Doppler Vibrometer (LDV) (Aranchuk, Lal, Hess, &
Sabatier, 2006).

(b)

03

£,=101 Hz

= .
SELERPLEL LI OO P PSP EPS

Frequency [m]

Figure 2. a) Anti-tank VS2.2 landmine simulant. b) The resonance frequency measurements of the VS2.2. Notice
that the measurement is performed in the lab where the mine is isolated (not buried).

For field measurements, the mine was buried at two and
six inches below the surface at a research location in
Oxford, MS. Two survey sites were selected at the
Oxford location. The first one, identified as a limestone
site (gravel site), is a roadway constructed more than 15
years ago from a layer of crushed limestone above a silt
loam representing hard soil (roadway). The second site is
an undisturbed grass site with fine-grained silt soil,
natural layering, and no vehicular traffic representing
soft soil (off-road). The target characterization
measurements were conducted using vertical
accelerometers. Ceramic shear ICP accelerometers with
a sensitivity of 1000 mV/g were used. Ground surface
motion on and off the target was measured by placing an
accelerometer at the center of the target and two
accelerometers at 0.5m offset from the target (Figure 3).

The target was excited using acoustic and seismic
excitation sources placed two meters from the buried
target (Figure 3). The acoustic source is a JLB
Professional speaker (model AWC15LF) with a 45 Hz to
2.2 kHz frequency range and a maximum SPL of 121
dB. The speaker was held at Im above the ground during
data collection, and a 5-second linear sweep input signal
from 45 Hz to 180 Hz was used with an SPL level of 110
dB. The seismic source is a VTS mechanical shaker
(model VG-100-6) with a DC—6.5 kHz frequency range
and a peak force of 110 1bs. A similar input signal of a 5-
second linear sweep from 45 Hz to 180 Hz was used for
the shaker. To have comparable excitation energy with
the speaker source, the output from the shaker was
adjusted so that the vibration level at Im offset was 0.5
pum/s.
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Figure 1. a) Field measurement geometry for landmine detection. b) The acoustic speaker used in the data

collection. ¢) The seismic source (shaker).

3D Finite Element Simulations

Various 3D data simulations were performed to evaluate
the mechanisms of landmine excitation and to correlate
with the field-measured data. We have modeled a
mechanical shaker and a speaker as sources in both the
soft (grass site) and the hard (limestone site) media. The
ground parameters required for simulation were
estimated from geophysical surveys at both sites. For the
limestone site, compressional wave speed Vp=355 m/s,
shear wave speed Vs=210 m/s and density=1900 kg/m".
For the grass site, compressional wave speed Vp=252
m/s, shear wave speed Vs=160 m/s, and density=1600
kg/m®. The elastic parameters Young’s modulus and
Poisson’s ratio were estimated using elastic relations.
The source and sensor dimensions and offsets were
chosen according to the field data measurements. The
COMOSL software, a robust and efficient software for
finite-element simulations, was used. The element size
was comparable to the minimum wavelength to avoid
numerical dispersion. The simulations were carried out
in the frequency domain since it is fast, robust, and more
efficient in controlling unwanted reflected waves coming
off the boundaries.

The conceptual mine model representing the VS2.2 is
shown in Figure 4a. Notice that this is a side view of the

mine. The 3D mine is derived via rotation along its
central axis. The mine comprises a main body and a thin
lid. There is air between the main body and the lid,
which is encompassed by a thin edge. The size and
dimensions of the conceptual mine are the same as the
actual mine simulant. What excites and resonates is the
lid. The elastic parameters of the mine are chosen such
that it produces the same resonant frequency (101 Hz) as
the real mine simulant in the air (i.e., not buried). The
COMSOL eigen-frequency package was used to
calculate the resonance frequency of the isolated mine.
The model was meshed using free tetrahedral elements
for finite element modeling in the frequency domain.
The mesh size was chosen to be finer in the top areas
and coarser in the body areas, with minimum and
maximum of 0.004 and 0.025 m (Figure 4b). The
modeled lid is chosen to be Acrylic plastic with a density
of 1300 kg/m?, Young’s modulus of 1e9, and Poisson’s
ratio of 0.36. The body of the modeled mine is a more
rigid material with the density of 5000 kg/m’, Young’s
modulus of 2e9 and Poisson’s ratio of 0.25. The isotropic
loss factor (1) is included in the modeling to represent
the damping of the mine. Different trial values of 0.05,
0.1, and 0.2 were tested in order to produce the best fit to



the frequency response curve of the real isolated mine.
Tests revealed that the isotropic loss factor of 0.05 fits
the real curve the best compared to other candidate
values (Figure 4¢). This FE-modeled mine produces the
same resonance frequency as the real isolated mine
(fo=101 Hz).

Since often a hole is dug to bury the mine, a soft layer
above the buried land mine needs to be used to represent
the overburden soil. The overburden (topsoil) contributes
to the excitation and needs to be included in the full
simulation of the landmine response when it is buried. A
landmine with overburden soil is a coupled system. The
coupled overburden and mine need to be simulated
together. The overburden layer is softer (less compact)
than the native soil and has lower elastic parameters.
Adding soil above the mine changes the mine response.
Overburden geophysical parameters are different from
the surrounding (native) soil. We considered 60% of the
geophysical parameters (compressional and shear wave
speed and density) of the native ground for topsoil.
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However, for the damping of the overburden, we used
the same isotropic value as the native ground.

A full simulation of the landmine response when it is
buried is shown in Figure 4(d). Since a hole was dug to
bury the mine, a soft layer of soil was used as an
overburden. Notice that the dimensions are exaggerated.
The acoustic source was placed in the air at a height of
Im from the ground surface. The Monopole Point
Source under the Transient Pressure Acoustics module in
the COMSOL environment was used as an acoustic
source. The monopole amplitude of the source was 20
N/m. The seismic source vertically vibrated the ground
over a circular iron plate with a radius of 10cm. A free
tetrahedron mesh model with a maximum size of 0.4m
was used for maximum element size. The air density was
1.2 kg/m?, and the sound speed was 343 m/s for
modeling. The simulations were performed in the
frequency domain. About 120 mono-frequency
components ranging from 60Hz to 180Hz were
simulated for both source types.

PSS
SSRGS

s
e

(d)

Figure 2. a) Side view of the conceptual VS2.2 mine model. Note that the 3D mine model is derived from the
rotation of the 2D around its central axis. b) The 3D FE meshed model. ¢) Curve fitting to estimate the best loss
factor (7)) to determine the mine damping. d) Full simulation of landmine excitation using acoustic and seismic

sources. Note that the dimensions are exaggerated in (d) for better visualization.
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Data Results

Figure 5 to Figure 8 show the depth dependency with the
speaker and shaker source in the limestone and grass sites.
The solid lines represent the measured data results in all
figures, and the dashed lines indicate the numerical

Variation in depth

Figure 5 and Figure 6 show the depth dependency in the
limestone site with the shaker and speaker source,
respectively. The measured data with a shaker source on
the limestone road (Figure 5) is noisy but shows a peak
at about 122 Hz for the 2” buried mine and 160 Hz for
the 6” buried mine. The synthetic data show good
agreement with measured data for the shallow mine, but
the agreement diminishes for the deeper mine. The
response of the shallow mine using a speaker source
(Figure 6) shows a peak at about 121 Hz and is
significant and distinct compared to the shaker source.
The measured and synthetic data with the speaker source
agree well for the shallow mine. For the deeper mine, the
data shows high noise levels, and the resonant peak at
around 159 Hz is difficult to recognize. The synthetic
data shows a peak at about 142 Hz for the deeper mine.

For the grass site, Figure 7 and Figure 8 show the depth
dependency for a shaker and speaker source,

Variations in source type

Analysis of the results shows that, for the same near-
source offset, the seismic source generates higher on and
off-target vibration levels for both soil types. However,
the shaker source is anticipated to generate less vibration
with increasing source offset due to the attenuation of
the soil. For the limestone site, the velocity ratio with the
speaker source (Figure 6) is about four times higher than
the seismic source (Figure 5) at the same site. Similarly,

Variations in soil type
The limestone site (hard soil) has higher on-target and
lower oft-target vibration levels. This leads to higher on-
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simulations. Note that the vertical axis is the ratio of the
vertical velocity (Vz) of particle displacement on and off
the mine.

respectively. The shaker source (Figure 7) shows a peak
at about 106 Hz for the shallow buried mine. The
synthetic data shows a good agreement with the field-
measured data with a peak at 98Hz. However, the
attenuation and velocity ratio do not agree with the
measured values. For the deeper mine, the measured data
shows a peak at 108 Hz, and the model shows a peak at
112 Hz. The measured data using a speaker source
(Figure 8) shows a resonant frequency (peak) of 104 Hz
for the shallow buried mine. It is hard to recognize a
sharp peak for the deeper buried mine. The modeled data
shows a good agreement in estimating resonant
frequencies of shallow mine; however, attenuation is not
well-estimated.

The results at both sites show that regardless of the
source or soil type, with an increase in depth, ground
vibration levels and on-target/off-target ratio decrease
while resonant frequency increases.

for the grass site, the velocity ratio is higher for the grass
site than that of the shaker source (Figure 7 versus
Figure 8). This higher velocity ratio for the speaker
source is due to the speaker's low off-target vibration
level. Another observation is that in both soil types,
similar resonant frequency values are observed from
both sources.

target/off-target ratios at resonant frequencies in the
limestone soil.
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Figure 3. Depth dependency with the seismic source in the limestone site. Solid lines represent the measured data,
and dotted lines indicate the simulations. Note that the vertical axis is the vertical velocity (Vz) of particle
displacement on and off the mine. Blue is the 2” buried mine, and green is the mine buried at 6”.
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Figure 4. Depth dependency with the acoustic source in the limestone site. Solid lines represent the measured data
and, dotted lines indicate the simulations. Note that the vertical axis is the vertical velocity (Vz) of particle
displacement on and off the mine. Blue is the 2” buried mine, and green is the mine buried at 6”.
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Figure 5. Depth dependency with the seismic source in the grass site. Solid lines represent the measured data, and
dotted lines indicate the synthetic simulations. Note that the vertical axis is the vertical velocity (Vz) of particle
displacement on and off the mine. Blue is the 2 buried mine and green is the mine buried at 6”.
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Figure 6: Depth dependency with the acoustic source in the grass site. Solid lines represent the measured data, and
dotted lines indicate the simulations. Note that the vertical axis is the vertical velocity (Vz) of particle displacement
on and off the mine. Blue is the 2” buried mine, and green is the mine buried at 6”.

Conclusions

Non-metal mines cannot be easily detected via
electromagnetic methods. Thus, mechanical techniques
are implemented to excite and detect such mines via
their resonant frequencies. This research studies a non-

metal landmine's response and resonance behavior when
excited using seismic and acoustic sources. Field
measurements and synthetic simulations were performed
to evaluate the effect of various parameters in landmine



detection. We have investigated the effect of the mine
itself, the overburden, and the energy source. The
conceptual overburden model is a less compacted
version of the native soil and needs to be modeled. Field
tests were performed in soft (grass site) and hard soil
(limestone gravel) sites. 3D synthetic simulations were
performed via the finite-element method in the
frequency domain. For modeling, we introduced a
conceptual mine model to represent the real mine model
efficiently. A buried landmine shows different resonant
frequencies than a mine isolated in the air. The
simulations agreed with the measured data, particularly
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Abstract

Landmines are a major problem in many areas of the world. In spite of the fact that many different types

of landmine sensors have been developed, the detection of non-metallic landmines remains very difficult. The objective of
this contribution is to employ the use of structural indices in the isolation of gemstones and other objects (e,g, landmines)

from the ground using their structures or geometry. The isolation of landmine (military ordnances) and gemstones, based
on structural identity, using the 3D Euler deconvolution of aecromagnetic and pseudogravity transforms have been
employed in the mineral-rich zones of Osi NE (Sheet 225) area of central Nigeria. It was based on the analogy that both

landmines and spherical host structures have the same structural index (SI), which can be used to isolate them before
differentiating them with GPR techniques into ordnances or non-ordnances. The 3D structures, e.g. spheres and dipoles,

that are commonly associated with certain gemstones have been successfully used to locate or identify landmines (tanks
and drums) in certain parts of the world. The gravity and magnetic techniques proved to be fast and effective tool for
detecting landmines, especially at regional scale; however, the differentiation and separation of the landmines from other

non-ordnances involves the use of GPR techniques.

Introduction

Landmines are a type of inexpensive weapon widely
used in the pre-conflicted areas in many countries
worldwide. The two main types are the metallic and non-
metallic (mostly plastic) landmines. They are most
commonly investigated by magnetic, ground penetrating
radar (GPR), and metal detector (MD) techniques. These
geophysical techniques however have significant
limitations in resolving the non-metallic landmines and
wherever the host materials are conductive (Metwaly,
2007). Landmines are a major problem in many areas of
the world. In spite of the fact that many different types
of landmine sensors have been developed,

the detection of non-metallic landmines remains very
difficult. Most landmine detection sensors are affected
by soil properties such as water content (Hong et al.,
2001).

Reliable landmine detection is still an unresolved
problem. Demining operations are complex activities

because of the large variety of existing landmine types,
many different possible soil and terrain conditions, and
environmental circumstances. Because of its ability of
detecting both metallic and non-metallic objects, ground
penetrating radar (GPR) is a promising method for
detecting landmines that may allow faster and safer
operations. As the performance of GPR is mainly
governed by the target signature, the potential of
discriminating a target based on the presence of internal
reflections could be a valuable advantage for the
identification and recognition processes (Lombardi et al.,
2018).

The gravity and magnetic (GM) techniques have been
employed worldwide by geoscientists to explore for oil
and solid minerals which abound in the subsurface
structures of the earth. The use of Euler Deconvolution
as an interpretation tool to determine source location of
potential field anomalies is well established
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(Mushayandebvu et al., 2004). Other methods for
structural study include: 2D Forward modeling and
inversion (Talwani and Heirtzler, 1964) and the
estimation of the structural index (Barbosa et al., 1999)
amongst others.

The use of the acromagnetic and gravity method in this
case is intended to focus additional exploration efforts in
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demining of pre-conflicted and war-torn areas by
isolating buried landmines from the ground. The
identification of the potential structure with 3D shape,
like landmines (Figure 1) and gemstones, with the intent
of isolating them from the ground is the goal of this
research. The 3D structures (gemstones and/or
landmines) are then differentiated and separated using
internal structure detection from ground penetrating
radar images.

Figure 1. A typical VS-50 landmine (after Lombardi et al., 2018).

Location, Geomorphology and Regional Geology

The study area covers Osi NE (Sheet 225) in the
transition environment of Bida Basin and the
Southwestern Nigerian Basement Complex (Figure 2). A
Sheet comprises a /> degree by 2 degree contour map on
a scale of 1:100,000. The study area is bounded by
latitudes 8" 15” and 8° 30’ N and longitude 5°45” and 6
00’ E (Osi NE, Sheet 225) with an area extent of
approximately 729 km? in the Bida basin area of central
Nigeria. The vegetation is of the Guinea savannah type
with two distinct seasons (rainy and dry) (Udo, 1982)

Materials and Methods

Data source and analysis

The aecromagnetic data of Osi NE (Sheet 225) was
procured from the Nigeria Geological Survey Agency
(NGSA), Abuja, Nigeria. The survey, which was aimed
at mineral and ground water development, was collected
at a flight height of 80 m, flight line spacing of 500 m,
and tie line spacing of 2,000 m. The flight line direction
was NW — SE, whereas the tie lines were NE - SW. For
ease of processing, the data were stripped of a common

with tropical Guinea type climate (Kehinde and
Leohnert, 1989).

The Bida Basin is a NW-SE trending embayment
perpendicular to the main axis of the Benue Trough and
the Niger Delta Basin of Nigeria. The thin sedimentary
cover overlying the basement rock in this transition
environment is said to be responsible for the low depth
to sources along magnetic profiles (Megwara and
Udensi, 2014).

value of 32,000 nT. Data collection for this area was
done in 2006, so a 2005 epoch International
Geomagnetic Reference Field (IGRF) was used to
calculate inclination and declination as follows:

Field Strength = 33129.9632 nT;
Inclination = -6.87339275;
Declination =-2.51357917.
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Figure 2. Geological map of the Osi NE study area as obtained from fieldwork.
(Inset is the geological map of Bida basin; Adapted from Obaje et al., 2011).
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Figure 3. a) Total magnetic intensity map of the study area (REDE and its contour) (after NGSA, 2009).
b) Pseudogravity transforms and its contour map.
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Figures 3a and b are the Total Magnetic Intensity (TMI)
reduced to the equator and pseudogravity transform
maps of the study area, respectively. The maps
emphasize the intensities and the wavelengths

The 3D Euler Deconvolution Method

The 3D Euler deconvolution technique is an equivalent
method based on the Euler’s homogeneity equation as
developed by Reid et al. (1990) following Thompson’s
(1973) suggestion and operating on gridded magnetic
data. The equation relates the magnetic field and its
gradient components to the location of the source, with
the degrees of homogeneity n, which may be interpreted
as a structural index (Thompson, 1982). The structural
index (SI) is a measure of the rate of change with
distance of the field (Whitehead and Musselman, 2005).
The SI of 0.0, 2.0 and 3.0 (magnetic) and 0.0, 1.0 and
2.0 (gravity) represent step, pipe, and sphere,
respectively. The correct SI for a given feature is that
which gives the tightest clustering of solutions.

The 3-D Euler deconvolution processing routine in Oasis
Montaj™ is an automatic location and depth
determination software package for gridded magnetic
and gravity data. The Euler derived interpretation
requires only a little a priori knowledge about the
magnetic source geometry and information about the
magnetization vector (Barbosa et al., 2000).

Theory of Euler deconvolution method
Any three-dimensional function f(x,),z) is said to be
homogeneous of degree # if the function obeys the
expression (Whitehead and Musselman, 2005):

flctz)=t" f(xyz) O

From this it can be shown that the following (known as
Euler’s equation) is also satisfied (Whitehead and
Musselman, 2005):

From this it can be shown that the following (known as
Eulers equation) is also satisfied (Whitehead and
Musselman, 2005):

o o o
o Vo ttu Y @)
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of the local anomalies that reveal information on the
geometry, strike, contacts between rocks and intensities
of magnetization and gravimetric values within the study
area.

Thompson (1982) has shown that simple magnetic and
gravity models conform to Euler’s equation. The degree
of homogeneity, n, can be interpreted as a structural
index (SI). Reid et al. (1990) have shown that a magnetic
contact will yield an index of 0.5 provided that an offset
A is introduced to incorporate an anomaly amplitude,
strike and dip factors (Whitehead and Musselman,
2005):

oT oT oT
A=(x Xo)a—}_(y YO)a—}_(Z ZO)E 3)

Given a set of observed total field data, we can
determine an optimum source location (X,,Y,,Z,) by

solving Euler’s equations for a given index n by least-
squares inversion of the data.

Results and Discussion
Pattern interpretation of the aecromagnetic

and gravity data

Figure 3a is the TMI map and its contour that has been

reduced to the equator using the REDE submenu of

Oasis montaj™ software, while Figure 3b is the

pseudogravity map and its contour. For qualitative

analysis, the aeromagnetic and pseudogravity anomaly

maps have been divided into three distinct zones and

subzones of various magnetic and gravimetric

characteristics based on their patterns. These include:

(1) Zone A is characterized by anomalies with
moderately high to very high magnetic reliefs
(i.e. Al and A2; Figure 3a) with corresponding
low to very low density reliefs (i.e. A1 and A2;
Figure 3b) in the Northern part of the study area.
The amplitudes here vary mostly from < 52 to >
100 nT and from < -0.018 mGal to approx. 0.003
mG@Gal for magnetic data and pseudogravity
transforms, respectively. The major rocks here
include banded gneiss, quartzite and granite.

(i1) Zone B is characterized by low to intermediate
magnetic reliefs (i.e. subzones B1'to B3; Figure



24

3a) with corresponding high density reliefs (i.e.
subzones B1 to B3; Figure 3b) in the central part
of the study area. The anomalies in this zone
have amplitudes varying mostly from <-6 nT to
52 nT and 0.003 to approx. 0.025 mGal for
magnetic data and pseudogravity transforms,
respectively. The rocks here include migmatite,
granite, schist, granite gneiss and charnockite.

(i)  Zone C is characterized by a mixture of high and

moderately low magnetic reliefs (i.e. subzones

Zone coloured Euler solutions for 3D

Structures

Figure 4a shows the results obtained for structural index
3.0 (i.e. sphere or dipole model; magnetic). The zones
where there are several clusters are labelled A to F for
spheres or dipoles. In Oasis montaj™, window size
determination is either by default (i.e. 20 x 20) or
through iterations, as the correct SI for a given feature
will give the tightest clustering of solutions or sharpest
focus of results. Tanks and drums have been detected or
explored worldwide with structural index 3.0 (magnetic)
of 3D Euler deconvolution (Marchetti and Settimi,
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C1 and C2; Figure 3a) with corresponding
moderate and low pseudogravity reliefs (i.e.
subzones C1 and C2; Figure 3b). These
anomalies have amplitudes of approx. 29 to >
100 nT and -0.018 to approx. 0.001 mGal for the
magnetic and gravity data, respectively. This
zone is associated on the geological map with
charnockite, granite and migmatite.

2011). Figure 4b is the geologic map of the study area
showing the different zones and the corresponding
lithologies with the magnetic structures.

From Figures 4a and b, which represent the magnetic 3D
structures obtained from 3D Euler deconvolution and
their corresponding rock types, it is clear that zone A
(banded gneiss, migmatite and granite), B (granite,
migmatite, granite gneiss, schist and amphibolite), C
(migmatite), D (migmatite, granite, charnockite and
granite gneiss), E (migmatite, granite gneiss) and F
(granite) are the corresponding rock types for the
different zones.

830N

£ | Strike and Dip
o | Quarti I
B nigmatie

Figure 4. a) A typical acromagnetic Euler solutions map for sphere (S.I =3.0) showing the
zones of clustering. b) Geological map of the study area showing the different zones where
spheres (aeromagnetic) cluster and their corresponding rock types.
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Figure 5a shows the result obtained for structural index
2.0 (i.e. sphere or dipole model; pseudogravity). The
areas where there are several clusters are labelled G to J
for sphere. Tanks and drums have been detected or
explored worldwide with structural index 2.0 (gravity) of
3D Euler deconvolution (Marchetti and Settimi, 2011).
Figure 5b is the geologic map of the study area showing
the different zones and the corresponding lithologies
with the gravimetric structures.
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From Figures 5a and b, which represent the
pseudogravity 3D structures obtained from 3D Euler
deconvolution and their corresponding rock types,
respectively, it is clear that zone G (banded gneiss), H
(banded gneiss, quartzite and granite), I (migmatite,
charnockite, granite and granite gneiss) and J (migmatite
and granite) are the corresponding rock types for the
different zones. Many of these spherical features are
found all over the area, confirming that the area is very
rich in mineral resources.
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Figure 5. a) A typical pseudogravity Euler solutions map for sphere (S.I =2.0) showing the zones of clustering.
b) Geological map of the study area showing the different zones where spheres (pseudogravity) cluster and their

corresponding rock types.

Conclusions

Regional aeromagnetic data from Osi NE study area
was processed for structural mapping and demining
study. The different structures were delineated and
especially the 3D structures which are represented
by Euler structural indices 3.0 (i.e. sphere or dipole
model; magnetic) and 2.0 (i.e. sphere or dipole
model; pseudogravity) were first isolated using the
3D Euler deconvolution method in the study area.
These 3D structures were then differentiated and
separated into gemstones and/or landmines using
internal structure detection technique from ground

penetrating radar images. The abundance of
spherical features in the study area confirms the
usefulness of the 3D Euler in isolating
spheres/dipoles or landmines and prospective zones
for mineral exploration. The structural indices of
3.0 and 2.0 (i.e. sphere or dipole model) in magnetic
and gravity, respectively, have been used worldwide
to detect tanks and drums (or metalliferous bodies
and landmines) (Yaghoobian et al., 1992; Marchetti
and Settimi, 2011).
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Abstract

New technologies are required for humanitarian demining for acceleration of landmine clearance activities. Dual sensor is

a combination of electromagnetic induction sensor and ground penetrating radar (GPR), developed for landmine

detection. Tohoku University, Japan has developed a dual sensor that can visualize the buried objects on a smartphone.

This sensor uses 3-D migration algorithm for image reconstruction of GPR, which is useful for clutter reduction. In this

article, we introduce the technology of this sensor and demonstrate its usefulness in the mine affected countries including

Ukraine.

Introduction

Three years have passed since the outbreak of the war in
Ukraine, and there are reports of damage caused by
landmines left behind after the Russian military
withdrew (Human rights watch, 2023). Since the 1990s,
humanitarian demining activities have been carried out
in post-conflict landmine-affected countries such as
Cambodia and the former Yugoslavia countries.
Geophysical exploration techniques such as magnetic
exploration, electromagnetic exploration, and ground
penetrating radar (GPR) are used to detect landmines
and UXOs. We have developed a landmine detection
sensor for humanitarian demining, ALIS: Advanced
Landmine Imaging System, and have used it in landmine

Humanitarian Demining

Landmine clearance activity is classified into two
categories, namely military and humanitarian, and their
purposes are very different. In military landmine
detection, the purpose is to identify minefields and
remove mines that obstruct the passage of vehicles, etc.,
and the probability of detecting landmines does not need
to be 100%, but speed of work is pursued. Humanitarian
demining, on the other hand, aims to ensure the safety of
civilians living in the area by removing landmines after
the conflict that caused the landmine problems has
ended. In landmine-affected countries, there is a lot of
landmine removal activity in farmlands, pastures, and
forests, and the ultimate goal is to restore agricultural
activity and revitalize economic activity by returning

clearance activities in nine affected countries (Sato,
2025).

The Japanese prime minister Kishida visited Kiev in
March 2023, and reiterated Japan's support in the field of
humanitarian demining. Delivering ALIS is one of the
supports by the Japanese government. Japan
International Cooperation Agency (JICA) started a
project to introduce ALIS for demining in Cambodia in
2022, and started a project for Ukraine (JICA 2023).

This report describes a technical advantage of ALIS, and
then we will introduce the use of ALIS in landmine-
affected countries including Ukraine.

farmland and cultivated land to local farmers. Therefore,
humanitarian demining is essentially meaningless unless
100% detection and removal is achieved, and the time
that it takes to do so is overwhelmingly longer than
military demining.

United Nations (UN) regulations for humanitarian
demining require the removal of all metal objects up to
13 cm from the ground surface. However, in post-battle
areas, many metal fragments such as bullets and bomb
fragments are buried in the soil, making it difficult to
detect and remove all metal fragments and landmines. It
is therefore desirable to reduce work time through
efficient geophysical exploration.


mailto:motoyuki.sato.b3@tohoku.ac.jp

FastTIMES vol. 27.3, 2025

Geophysical Exploration Technologies Used for Landmine Detection

The targets of humanitarian demining include
unexploded ordnance, cluster munitions, anti-tank
mines, and anti-personnel land mines. Geophysical
exploration techniques must be selected based on the
properties of the targets and soil conditions.

The shell of an anti-tank mine is made of steel and is
about 50 cm in diameter and buried at a depth of about
0.5-1 m, whereas anti-personnel mines (plastic mines)
are filled with explosives in a plastic shell with a
diameter of 10 cm or less and contains a metal detonator
weighing several tens of grams. While anti-tank mines

Dual Sensor for Landmine Detection

Electromagnetic induction sensors (metal detectors) have
been primarily used to detect anti-personnel mines.
Although metal detectors developed for landmine
detection are highly reliable, they also detect any metal
fragments other than the metals contained in landmines,
so excavation and removal work take an enormous
amount of time. As a means to solving this problem, the
development of a “dual sensor" that combines a metal
detector with GPR was started around 2000. We started
developing a dual sensor ALIS in 2002 (Sato, et. al.,
2012). The most important technical feature of ALIS is
that it reduces clutter by synthetic aperture radar (SAR)
processing (migration) of GPR signals for imaging
buried objects.

GPR of ALIS uses an 800 MHz-2.6 GHz step
frequency-continuous wave (SF-CW) radar system and
uses circularly polarized EM waves with a cavity-back
spiral antenna. Another feature is that it acquires GPR
data while tracking the antenna position with a 3-axis
accelerometer, which enables it to reconstruct images of
subsurface objects using 3D migration. When detecting
landmines using ALIS, a metal detector is first used to
detect a metal object. Then GPR data is acquired in an
area of approximately 50 cm x 50 cm around the metal
object. The data acquisition takes about 30 seconds and
the data processing is performed on an Android
smartphone, and instantaneously the two images shown
in Figure 1 are displayed on the smartphone screen.

can be detected using a magnetic sensor or
electromagnetic induction sensor, anti-personnel mines
have detonators made of non-ferrous metals, so a
magnetic sensor cannot be used, but an electromagnetic
sensor with high sensitivity can be used. This type of
electromagnetic induction sensor is normally referred to
as a metal detector. On the other hand, GPR uses
electromagnetic wave reflections from metallic and non-
metallic objects, therefore it is suitable for detecting the
plastic shell of anti-personnel mines. Optical camera and
infrared camera can be used for detection of explosive
objects on the ground surface.

Deminer can check the size and the depth of the object
by changing the depth images of GPR.
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Figure 1. Data image acquired with.ALIS.




Application in Landmine-Affected Countries

Cambodian Mine Action Center (CMAC) started the test
of ALIS in minefields in 2018. In January 2019, ALIS
was approved for use in minefields in Cambodia and
full-scale operation began by CMAC. Based on the
results of ALIS field operational tests, 12 ALIS units
were provided to CMAC as Japanese government ODA
in February 2023.

In Bosnia and Herzegovina, a NATO SPS project
(NATO, 2023), jointly organized by the Bosnian Federal
Mine Clearing Organization, Tohoku University, and the

Activities and Prospects for Ukraine

In Ukraine, Russia’s annexation of the Crimean
Peninsula in March 2014 and the conflict with the
Russian military in the eastern Donbas region have been
occurring for more than 10 years, and the landmine
problem caused by the Russian military has already

become apparent (Bechtel et al., 2016). After the Russian

military invaded Ukraine in February 2022, a new
problem with landmines planted by the Russian military
became clear, and Ukraine has also requested Japan for
assistance in countering landmines. The landmine
problem in Ukraine, which is currently at war, is
different from other landmine-affected countries. There
have been reports of Russian troops intruding into urban
areas and burying landmines inside buildings or in the
rubble of destruction as they retreat, hindering
reconstruction efforts. ALIS has the ability to visualize
not only soil but also objects behind concrete, including
reinforcing steel. ALIS can be expected to be used even
in situations where conventional metal detectors are
useless because they react to reinforcing steel.

Japan may not provide any military support to Ukraine
by law, and its contribution to humanitarian demining, a
non-military activity, is extremely important. JICA, in
cooperation with the Ministry of Foreign Affairs,
launched a pilot project to introduce ALIS to Ukraine in
January 2023 (JICA, 2023). Because activities in
Ukraine by Japanese is limited, we trained deminers of
the State Emergency Service of Ukraine (SESU) in
Cambodia and Poland. For quick removal of explosive
objects in Ukraine, new technologies must be
introduced. United Nations Development Programme

FastTIMES vol. 27.3, 2025

Netherlands Institute of Applied Sciences (TNO), was

conducted between 2020 and 2023 for investigation of
effective use of ALIS for demining activities in actual

minefields.

GPR function of ALIS is important in Colombia,
because they have to find metal-free explosive objects
buried by guerrillas. In Colombia, the humanitarian
demining team of the Colombian army and Colombian
NGO Asociacion Campana Colombiana Contraminas
(CCCM) started to use ALIS.

(UNDP) Ukraine has organized events to demonstrate
new landmine detection methodologies in Lyviv,
Ukraine in July 2025 (JICA and UNDP, 2025). We
attended this event to demonstrate ALIS as shown in
Figure 2.

Figure 2. ALIS demonstration in UNDP event, held in
Lyviv, Ukraine July 2025. (Courtesy of UNDP).

Many different types of mines and explosives are found
in Ukraine. PFM-1, shown in Figure 3, which is also
known as a “Butterfly mine”, is an anti-personnel land
mine of Soviet and Russian production commonly found
in Ukraine. PFM-1 can be widely spread on the ground
surface from airplanes, and is very difficult to find
because of its small size and color. Figure 4 shows
horizontal slice GPR images obtained by ALIS.
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Horizontal slices are shown every 4mm in depth. The
target is a PFM-1 buried at Scm depth in dry sand. We
can see a red circular image of PFM-1. Deminers will
observe these images on a smartphone, and the depth of
the images can be changed by swiping the screen with a
finger. The deminer can understand the shape and the
depth of the buried objects, before excavation.

S
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We are discussing with SESU about the effective use
dual sensor ALIS in Ukraine, because the current
situation in Ukraine is not the typical situation for
humanitarian demining. For the time being, we will
operate ALIS in Ukraine, and based on the results, we
aim to increase the number of ALIS and start full-scale
operation.

. Figure 3. PFM-1 (Butterfly mine).
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Figure 4. ALIS GPR horizontal images (4mm step) of PFM-1 mine buried at Scm in sand.
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Conclusion

We demonstrated the technical advantages of dual sensor gravels. We think this sensor is quite useful for

ALIS for detection of landmines. 3-D migration of GPR humanitarian demining. We sincerely hope that the war
is the key technology for imaging subsurface objects, in Ukraine ends soon, and humanitarian demining
which can reduce the clutter, which is caused by soil operation can be started for the safety and economic
inhomogeneity, and objects such as grass root and recovery.
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One (1) Pop-Under, scrolling marquee style ad with tag line on
Home page, logo linked to Company web site

One (1) Button sized ad, linked logo, right rail on each web page

Purchase Separately

Package Rates
$600/yr. include both
web site ad

250/yr.
Szl locations




38

FastTIMES vol. 27.3, 2025

Environmental and Engineering Geophysical Society

2025 Corporate Membership Application

Renew or Join Online at www.EEGS.org

Salutation First Name Middle Initial Last Name
Company/Organization Title
Street Address City State/Province Zip Code Country
Direct Phone Mobile Phone Fax
Email Website
In order to identify your areas of specific interests and expertise, please check all that apply:
Willing to
Geophysical Professional/ Serveona
Role Interest or Focus Expertise Scientific Societies Committee?

L Consultant

L1 User of Geophysical Svcs.
1 Student

[1 Geophysical Contractor
1 Equipment Manufacturer
|| Software Manufacturer
[] Research/Academia

[ Government Agency

[ Other

[ ] Archaeology

' | Engineering

| | Environmental

| Geotechnical

"] Geo.Infrastructure
| Groundwater

| | Hazardous Waste

[ Humanitarian Geo.

[ | Mining

[ | Shallow Oil & Gas

L] uxo

[ Aerial Geophysics

1 Agriculture

[ ] Renewable Energy
[ ] Other

| | Borehcle Geophysical
Logging

"1 Electrical Methods

L1 Electromagnetics

1 Gravity

L] Ground Penetrating
Radar

.| Magnetics

[] Marine Geophysics
[ Remote Sensing
L1 Seismic

[ Other

[ AAPG ] Publications
L AEG "1 Web Site

[ ASCE _ Membership
T AWWA - Student

[ AGU "] Task Force DEI
Do DSt
L[| EERI Inclusion)
[ Geolnstitute

 GSA

L] NGWA

[ ] NSG

L1 SEG

[T SSA

L] SPWLA

_I NAOC

1391 Speer Boulevard | Suite #450 | Denver, CO 80204
(p) 001.1.303.531.7517 | staff@eegs.org | www.eegs.org



39 FastTIMES vol. 27.3, 2025

Environmental and Engineering Geophysical Society . .
hip Application Renew or Join Online at www.EEGS.org
I ARPRPIICaA IO N

2025 Corporate Members

FOUNDATION CONTRIBUTIONS

FOUNDERS FUND

The Founders Fund has been established to support costs associated with the establishment and maintenance of
the EEGS Foundation as we solicit support from larger sponsors. These will support business office expenses, nec-
essary travel, and similar expenses. It is expected that the operating capital for the foundation will eventually be
derived from outside sources, but the Founder’s Fund will provide an operation budget to “jump start” the work.
Donations of $50.00 or more are greatly appreciated. For additional information about the EEGS Foundation (an IRS
status 501(c)(3) tax exempt public charity), visit the website at http://www.EEGSFoundation.org.

Foundation Fund Total: $

STUDENT SUPPORT ENDOWMENT

This Endowed Fund will be used to support travel and reduced membership fees so that we can attract greater in-
volvement from our student members. Student members are the lifeblood of our society, and our support can lead
to a lifetime of involvement and leadership in the near-surface geophysics community. Donations of $50.00 or more
are greatly appreciated. For additional information about the EEGS Foundation (a tax exempt public charity), visit
the website at http://www.EEGSFoundation.org.

Student Support Endowment Total: $

CORPORATE CONTRIBUTIONS

The EEGS Foundation is designed to solicit support from individuals and corporate entities that are not currently
corporate members (as listed above). We recognize that most of our corporate members are small businesses
with limited resources, and that their contributions to professional societies are distributed among several
organizations. The Corporate Founder’s Fund has been developed to allow our corporate members to support the
establishment of the Foundation as we solicit support from new contributors.

Corporate Contribution: $

Foundation Total: $

Subtotals
PAYMENT INFORMATION Membership: $
| Check/Money Order [ VISA 7 AmEx Total Student Sponsorship @ $20 ea. $
. Foundation Contributions: $
[ MasterCard [ ] Discover
Grand Total: $§
Card Number Exp. Date CVV #:

Name on Card

Signature

Make your check or money order in US dollars payable to: EEGS. Checks from Canadian bank accounts must be
drawn on banks with US affiliations (example: checks from Canadian Credit Suisse banks are payable through
Credit Suisse New York, USA). Checks must be drawn on US banks.

Payments are not tax deductible as charitable contributions although they may be deductible as a business
expense. Consult your tax advisor.

Return this form with payment to: EEGS, 1391 Speer Boulevard, Suite #450, Denver, CO 80204 USA
Credit card payments can be faxed to EEGS at 001.1.303.820.3844

Corporate dues payments, once paid, are non-refundable. Individual dues are non-refundable except in cases of
extreme hardship and will be considered on a case-by-case basis by the EEGS Board of Directors. Requests for
refunds must be submitted in writing to the EEGS business office.

QUESTIONS? CALL 001.1.303.531.7517
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Your products, services and expertise should stand apart
when you advertise

When you participate in the FastTIMES advertising program, yours will!

Consultants, contractors and geophysical technology providers, your potential users and customers will be

viewing your ad in a news magazine published electronically by the Environmental and Engineering Geophysical

Society (EEGS) where each issue features technical articles on diverse topics, news from the near-surface

geophysical community, information on recent and coming events, and notices of professional opportunities.

Why FastTIMES?

Widely distributed to a targeted audience of over 3500 near surface
professionals

Easy to download format allows readers to view your products and services on
demand

Features technical articles on the latest developments, case histories and
applications and Special Issues on timely topics

Advertisers can reserve ad space adjacent to articles or information related to or
especially applicable to your product or service

Trusted source — EEGS and its publications maintain a level of professionalism
advertisers can trust to run cost-effective, prominently advertisements and
readers value as a reliable source

How Do | Participate in FastTIMES Advertising Program?

To learn more about advertising in FastTIMES, access https://www.eegs.org/advertising-information, call
303.531.7517 or email staff@eegs.org.

Environmental
and Engineering
Geophysical Society
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