Non-linear Spectral Induced Polarization effects in Porous Media Containing Electron Conducting Minerals

Nuray Oncul, Rutgers University Newark, NJ John Kingman, Terrigena Ltd., Hong Kong Lee Slater, Rutgers University Newark, NJ

Abstract

Spectral Induced Polarization (SIP) is a geophysical technique widely employed to explore metallic and non-metallic mineralization by measuring the complex impedance across a range of frequencies. A non-linear SIP effect may occur in the presence of electron-conducting minerals when a current is injected. A pathway occurs in the presence of a charge transport processes involving redox reactions, referred to as the "faradaic pathway". The strength of this non-linear effect is expected to depend on the electrochemistry of the metal-electrolyte interface, as well as the texture of the electron conductors. This study investigated the strength of the faradaic process across a variety of electron-conducting minerals. Laboratory measurements were conducted on synthetic electron-conducting mineral-sand mixtures and rock samples exhibiting both veinlet and disseminated mineralization. The non-linear SIP effect was quantified by applying a range of current densities and determining the degree of linearity between SIP response and applied current density. Compared to disseminated mineralization, veinlet mineralization results in much stronger non-linear SIP effects. However, some electron-conducting minerals exhibited strong non-linear effects (e.g., copper minerals), whereas others showed negligible non-linear effects irrespective of texture (e.g., graphite). These differences are directly linked to mineralogy, raising the possibility that the faradaic effect can provide information for discriminating electron-conducting minerals and rock texture.